A Cauchy-Davenport type result for arbitrary regular graphs
Artikel i vetenskaplig tidskrift, 2011

Motivated by the Cauchy-Davenport theorem for sumsets, and its interpretation in terms of Cayley graphs, we prove the following main result: There is a universal constant e > 0 such that, if G is a connected, regular graph on n vertices, then either every pair of vertices can be connected by a path of length at most three, or the number of pairs of such vertices is at least 1+e times the number of edges in G. We discuss a range of further questions to which this result gives rise.

graph powers

Regular graph

Cauchy-Davenport theorem

Författare

Peter Hegarty

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

Integers

1867-0660 (ISSN)

Vol. 11 2 227-235

Fundament

Grundläggande vetenskaper

Ämneskategorier

Annan matematik

Mer information

Skapat

2017-10-06