Permutations all of whose patterns of a given length are distinct
Artikel i vetenskaplig tidskrift, 2013

For each integer k >= 2, let F(k) denote the largest n for which there exists a permutation \sigma \in S_n, all of whose patterns of length k are distinct. We prove that F(k) = k + \lfloor \sqrt{2k-3} \rfloor + e_k, where e_k \in {-1,0} for every k. We conjecture an even more precise result, based on data for small values of k.

Tilted checkerboard permutation

Permutation pattern

k-Separator

Författare

Peter Hegarty

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

Journal of Combinatorial Theory - Series A

0097-3165 (ISSN) 10960899 (eISSN)

Vol. 120 7 1663-1671

Fundament

Grundläggande vetenskaper

Ämneskategorier

Diskret matematik

DOI

10.1016/j.jcta.2013.06.006

Mer information

Skapat

2017-10-06