Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae
Artikel i vetenskaplig tidskrift, 2012

The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels and chemicals, and it is also provides a platform for the production of many heterologous proteins of medical or industrial interest. Therefore, many studies have focused on metabolic engineering S similar to cerevisiae to improve the recombinant protein production, and with the development of systems biology, it is interesting to see how this approach can be applied both to gain further insight into protein production and secretion and to further engineer the cell for improved production of valuable proteins. In this review, the protein post-translational modification such as folding, trafficking, and secretion, steps that are traditionally studied in isolation will here be described in the context of the whole system of protein secretion. Furthermore, examples of engineering secretion pathways, high-throughput screening and systems biology applications of studying protein production and secretion are also given to show how the protein production can be improved by different approaches. The objective of the review is to describe individual biological processes in the context of the larger, complex protein synthesis network.

protein secretion

er-associated degradation

heterologous proteins

signal recognition particle

vesicles

allows efficient secretion

cell-surface

systems biology

copii-coated

endoplasmic-reticulum

green fluorescent protein

genetic engineering

alpha-factor precursor

yeast

n-linked glycosylation

Författare

Jin Hou

Chalmers, Kemi- och bioteknik, Livsvetenskaper, Systembiologi

Keith Tyo

Chalmers, Kemi- och bioteknik, Livsvetenskaper, Systembiologi

Zihe Liu

Chalmers, Kemi- och bioteknik, Livsvetenskaper, Systembiologi

Dina Petranovic Nielsen

Chalmers, Kemi- och bioteknik, Livsvetenskaper, Systembiologi

Jens B Nielsen

Chalmers, Kemi- och bioteknik, Livsvetenskaper, Systembiologi

FEMS Yeast Research

1567-1356 (ISSN) 1567-1364 (eISSN)

Vol. 12 491-510

Industrial Systems Biology of Yeast and A. oryzae (INSYSBIO)

Europeiska kommissionen (FP7), 2010-01-01 -- 2014-12-31.

Ämneskategorier

Kemiteknik

Styrkeområden

Livsvetenskaper och teknik

DOI

10.1111/j.1567-1364.2012.00810.x