Diversity versus Channel Knowledge at Finite Block-Length
Paper i proceeding, 2012

We study the maximal achievable rate $R^{*}(n, \epsilon)$ for a given block-length $n$ and block error probability $\epsilon$ over Rayleigh block-fading channels in the noncoherent setting and in the finite block-length regime. Our results show that for a given block-length and error probability, $R^{*}(n, \epsilon)$ is not monotonic in the channel's coherence time, but there exists a rate maximizing coherence time that optimally trades between diversity and cost of estimating the channel.

Författare

Wei Yang

Chalmers, Signaler och system, Kommunikations- och antennsystem, Kommunikationssystem

Giuseppe Durisi

Chalmers, Signaler och system, Kommunikations- och antennsystem, Kommunikationssystem

Tobias Koch

Universidad Carlos III de Madrid

Yury Polyanskiy

Massachusetts Institute of Technology (MIT)

IEEE Information Theory Workshop (ITW), Lausanne, 3-7 September 2012

572-576 6404740

Styrkeområden

Informations- och kommunikationsteknik

Ämneskategorier

Telekommunikation

DOI

10.1109/ITW.2012.6404740

ISBN

978-146730223-4

Mer information

Senast uppdaterat

2018-04-11