Time-Resolved Surface-Enhanced Ellipsometric Contrast Imaging for Label-Free Analysis of Biomolecular Recognition Reactions on Glycolipid Domains
Artikel i vetenskaplig tidskrift, 2012

We have applied surface-enhanced ellipsometry contrast (SEEC) imaging for time-resolved label-free visualization of biomolecular recognition events on spatially heterogeneous supported lipid bilayers (SLB). Using a conventional inverted microscope equipped with total internal reflection (TIR) illumination, biomolecular binding events were monitored with a lateral resolution near the optical diffraction limit at an acquisition rate of similar to 1 Hz with a sensitivity in terms of surface coverage of similar to 1 ng/cm(2). Despite the significant improvement in spatial resolution compared to alternative label-free surface-based imaging technologies, the sensitivity remains competitive with surface plasmon resonance (SPR) imaging and imaging ellipsometry. The potential of the technique differences in protein binding kinetics was demonstrated by time-resolved imaging of anti-GalCer antibodies binding to phase-separated lipid bilayers consisting of phosphatidylcholine (POPC) and galactosylceramide (GalCer). A higher antibody binding capacity was observed on the GalCer-diluted fluid region in comparison to the GalCer-rich gel phase domains. This observation is tentatively attributed to differences in the presentation of the GalCer epitope in the two phases, resulting in differences in availability of the ligand for antibody binding. The complementary information obtained by swiftly switching between SEEC and fluorescence (including TIR fluorescence) imaging modes was used to support the data interpretation. The simplicity and generic applicability of the concept is discussed in terms of microfluidic applications.



plasmon resonance


atomic-force microscopy

optical anisotropy

protein interactions


quartz-crystal microbalance


galactosyl ceramide


Anders Gunnarsson

Chalmers, Teknisk fysik, Biologisk fysik

Marta Bally

Chalmers, Teknisk fysik, Biologisk fysik

Peter Jönsson

University of Cambridge

N. Medard

Fredrik Höök

Chalmers, Teknisk fysik, Biologisk fysik

Analytical Chemistry

0003-2700 (ISSN) 1520-6882 (eISSN)

Vol. 84 15 6538-6545





Mer information

Senast uppdaterat