Ether Based Electrolyte, LiB(CN)(4) Salt and Binder Degradation in the Li-O-2 Battery Studied by Hard X-ray Photoelectron Spectroscopy (HAXPES)
Artikel i vetenskaplig tidskrift, 2012

Li-O-2 cells composed of a carbon cathode containing an alpha-MnO2 nanowire catalyst and a Kynar (PVDF-HFP) binder were cycled with different electrolytes containing 0.5 M LiB(CN)(4) salt in polyethylene glycol dimethyl ether (PEGDME) or tetraethylene glycol dimethyl ether (Tetraglyme) solvents. All cells exhibited fast capacity fading. To explain this, the surface chemistry of the carbon electrodes were investigated by synchrotron based hard X-ray photoelectron spectroscopy (HAXPES) using two photon energies of 2300 and 6900 eV. It is shown that the LiB(CN)(4) salt and Kynar binder were degraded during cycling, forming a layer composed of salt and binder residues on the cathode surface. The degradation mechanism of the salt differed in the two tested solvents and, consequently, different types of boron compounds were formed during cycling. Larger amounts of the degraded salt was observed using Tetraglyme as the solvent. With a nonfluorined Li-salt, the observed formation of LiF, which might be a reason for the observed blockage of pores in the cathode and for the observed capacity fading, must be due to Kynar binder decomposition. The amount of LiF formed in the PEGDME cell was larger than that formed in the Tetraglyme cell. The results indicate that not only the electrolyte solvent, but also electrolyte salt as well as the binder used for the porous cathode must be carefully considered when building a successful rechargeable Li-O-2 battery.

polymer electrolyte


li-air cells


carbonate electrolytes

lithium-oxygen battery

b(cn)(4)(-) anion




ionic liquids


S. R. Younesi

Uppsala universitet

M. Hahlin

Uppsala universitet

Marcel Treskow

Chalmers, Teknisk fysik, Kondenserade materiens fysik

Johan Scheers

Chalmers, Teknisk fysik, Kondenserade materiens fysik

Patrik Johansson

Chalmers, Teknisk fysik, Kondenserade materiens fysik

K. Edstrom

Alistore - European Research Institute

Uppsala universitet

Journal of Physical Chemistry C

1932-7447 (ISSN) 1932-7455 (eISSN)

Vol. 116 35 18597-18604









Mer information

Senast uppdaterat