Maximum-Likelihood Object Tracking from Multi-View Video by Combining Homography and Epipolar Constraints
Paper i proceeding, 2012

This paper addresses problem of object tracking in occlusion scenarios, where multiple uncalibrated cameras with overlapping fields of view are used. We propose a novel method where tracking is first done independently for each view and then tracking results are mapped between each pair of views to improve the tracking in individual views, under the assumptions that objects are not occluded in all views and move uprightly on a planar ground which may induce a homography relation between each pair of views. The tracking results are mapped by jointly exploiting the geometric constraints of homography, epipolar and vertical vanishing point. Main contributions of this paper include: (a) formulate a reference model of multi-view object appearance using region covariance for each view; (b) define a likelihood measure based on geodesics on a Riemannian manifold that is consistent with the destination view by mapping both the estimated positions and appearances of tracked object from other views; (c) locate object in each individual view based on maximum likelihood criterion from multi-view estimations of object position. Experiments have been conducted on videos from multiple uncalibrated cameras, where targets experience long-term partial or full occlusions. Comparison with two existing methods and performance evaluations are also made. Test results have shown effectiveness of the proposed method in terms of robustness against tracking drifts caused by occlusions.

epipolar geometry

multiple view geometry

visual object tracking

multiple cameras

planar homography

Författare

Yixiao Yun

Chalmers, Signaler och system, Signalbehandling och medicinsk teknik

Irene Yu-Hua Gu

Chalmers, Signaler och system, Signalbehandling och medicinsk teknik

Hamid Aghajan

6th ACM/IEEE Int'l Conf on Distributed Smart Cameras (ICDSC 12), Oct 30 - Nov.2, 2012, Hong Kong

6 pages-
978-1-4503-1772-6 (ISBN)

Ämneskategorier (SSIF 2011)

Språkteknologi (språkvetenskaplig databehandling)

Data- och informationsvetenskap

Geometri

Systemvetenskap

Elektroteknik och elektronik

Signalbehandling

Datavetenskap (datalogi)

Diskret matematik

Datorseende och robotik (autonoma system)

Styrkeområden

Transport

Livsvetenskaper och teknik (2010-2018)

ISBN

978-1-4503-1772-6

Mer information

Skapat

2017-10-07