Testing versus proving in climate impact research
Paper i proceeding, 2013

Higher-order properties arise naturally in some areas of climate impact research. For example, "vulnerability measures", crucial in assessing the vulnerability to climate change of various regions and entities, must fulfill certain conditions which are best expressed by quantification over all increasing functions of an appropriate type. This kind of property is notoriously difficult to test. However, for the measures used in practice, it is quite easy to encode the property as a dependent type and prove it correct. Moreover, in scientific programming, one is often interested in correctness "up to implication": the program would work as expected, say, if one would use real numbers instead of floating-point values. Such counterfactuals are impossible to test, but again, they can be easily encoded as types and proven. We show examples of such situations (encoded in Agda), encountered in actual vulnerability assessments.

dependently-typed programming

formalization

climate impact research

domain-specific languages

Författare

Cezar Ionescu

Patrik Jansson

Chalmers, Data- och informationsteknik, Programvaruteknik

Leibniz International Proceedings in Informatics, LIPIcs

18688969 (ISSN)

Vol. 19 41-54
978-3-939897-49-1 (ISBN)

Styrkeområden

Informations- och kommunikationsteknik

Drivkrafter

Hållbar utveckling

Fundament

Grundläggande vetenskaper

Ämneskategorier

Programvaruteknik

Klimatforskning

DOI

10.4230/LIPIcs.TYPES.2011.41

ISBN

978-3-939897-49-1

Mer information

Senast uppdaterat

2023-10-05