Numerical Sensitivity of Linear Matrix Inequalities Using Shift and Delta Operators
Artikel i vetenskaplig tidskrift, 2012

The numerical sensitivity of linear matrix inequalities (LMIs) arising from discrete-time control with short sampling periods is analyzed using shift and delta operators. The delta operator avoids cancellation problems for short sampling periods, and it includes a system scaling proportional to the inverse of the sampling period. The numerical sensitivity of both these mechanisms is investigated analytically, and verified by numerical examples. The conclusion is that the scaling procedure is (somewhat surprisingly) much more essential for shorter sampling periods than avoiding the cancellation problem.

shift operators

sampling periods

discrete-time control

system scaling

LMI

cancellation problems

delta operators

scaling procedure

linear matrix inequalities

numerical sensitivity

Författare

Bengt Lennartson

Chalmers, Signaler och system, System- och reglerteknik

R. Middleton

University of Newcastle

Ivar Gustafsson

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

IEEE Transactions on Automatic Control

0018-9286 (ISSN) 1558-2523 (eISSN)

Vol. 57 11 2873-2879 6176205

Styrkeområden

Produktion

Ämneskategorier

Beräkningsmatematik

Reglerteknik

DOI

10.1109/TAC.2012.2192361

Mer information

Skapat

2017-10-07