Plasmonics: Heat transfer between metal nanoparticles and supporting nanolayers
Artikel i vetenskaplig tidskrift, 2012

Due to plasmon-related local field enhancement, metal nanoparticles can be used in conventional surface photochemistry and also in numerous applications, e.g., for optimization of the performance of thin film solar cells and photo-electrochemical cells employed for solar-to-fuel energy conversion. In the experimental model studies related to such cells, metal nanoparticles are located on or embedded into a 40-100 nm thick active photoabsorbing material (e.g., Si or Fe2O3), supported underneath by a similar to 1 mm thick glass layer. We present general equations describing heat transport in the layered systems of this type. The equations contain the coefficients of heat transfer between different nanophases. Using the Debye model, we derive an analytical expression for these coefficients. Our calculations show that for the energy flux corresponding to solar light the overheating is practically negligible. In more conventional surface photochemistry, the effect may be more appreciable with increasing the energy flux and support thickness.

nanoshells

absorption

gold nanoparticles

flow

solar-cells

conversion

Författare

Vladimir Zhdanov

Chalmers, Teknisk fysik, Kemisk fysik

Kompetenscentrum katalys (KCK)

Igor Zoric

Chalmers, Teknisk fysik, Kemisk fysik

Bengt Herbert Kasemo

Chalmers, Teknisk fysik, Kemisk fysik

Kompetenscentrum katalys (KCK)

Physica E: Low-Dimensional Systems and Nanostructures

1386-9477 (ISSN)

Vol. 46 113-118

Ämneskategorier

Fysik

DOI

10.1016/j.physe.2012.09.004