Osteogenesis-inducing calcium phosphate nanoparticle precursors applied to titanium surfaces
Artikel i vetenskaplig tidskrift, 2013

This study investigated the effects of the morphology and physicochemical properties of calcium phosphate (CaP) nanoparticles on osteogenesis. Two types of CaP nanoparticles were compared, namely amorphous calcium phosphate (ACP) nano-spheres (diameter: 9-13 nm) and poorly crystalline apatite (PCA) nano-needles (30-50 nm x 2-4 nm) that closely resemble bone apatite. CaP particles were spin-coated onto titanium discs and implants; they were evaluated in cultured mouse calvarial osteoblasts, as well as after implantation in rabbit femurs. A significant dependence of CaP coatings was observed in osteoblast-related gene expression (Runx2, Colla1 and Spp1). Specifically, the PCA group presented an up-regulation of the osteospecific genes, while the ACP group suppressed the Runx2 and Colla1 expression when compared to blank titanium substrates. Both the ACP and PCA groups presented a more than three-fold increase of calcium deposition, as suggested by Alizarin red staining. The removal torque results implied a slight tendency in favour of the PCA group. Different forms of CaP nanostructures presented different biologic differences; the obtained information can be used to optimize surface coatings on biomaterials.


coated implants

osteoblast adhesion


octacalcium phosphate


ca-deficient hydroxyapatite





Wenxiao He

Chalmers, Kemi- och bioteknik, Teknisk ytkemi

Martin Andersson

Chalmers, Kemi- och bioteknik, Teknisk ytkemi

P. P. C. de Souza

Universidade Estadual Paulista (UNESP)

C. A. D. Costa

Universidade Estadual Paulista (UNESP)

E. M. Munoz

Universidade Estadual Paulista (UNESP)

Humberto Osvaldo Schwartz-Filho

Universidade Estadual Paulista (UNESP)

Mariko Hayashi

Malmö universitet

A. Hemdal

Malmö universitet

A. Fredel

Malmö universitet

Ann Wennerberg

Malmö universitet

Ryo Jimbo

Malmö universitet

Biomedical Materials (Bristol)

1748-6041 (ISSN) 1748-605X (eISSN)

Vol. 8 3 035007






Mer information

Senast uppdaterat