Electronic properties of anodized TiO2 electrodes and the effect on the in-vitro response
Artikel i vetenskaplig tidskrift, 2014

For dental implants, improved osseointegration is obtained by modifying the surface roughness as well as oxide morphology and composition. A combination of different effects contributes to enhanced performance, but with surface roughness as the dominant factor. In order to single out the effect of oxide conductivity on biological response, oxide films with similar thickness and surface roughness but different electronic properties were formed using galvanostatic anodization. Three different current densities were used, 2.4, 4.8 and 11.9 mAcm-2, which resulted in growth rates ranging from 0.2 to 2.5 V/s. The electronic properties were evaluated using cyclic voltammetry and impedance spectroscopy, while the biological response was studied by cell activity and apatite formation. The number of charge carrier in the oxide film close to the oxide/solution interface decreased from 5.810-19 to 3.210-19 cm-2 with increasing growth rate, i.e. the conductivity decreased correspondingly. Cell response of the different surfaces was tested in-vitro using human osteoblast-like cells (MG-63). The results clearly show decreased osteoblast proliferation and adhesion but higher mineralisation activity for the oxide with lower conductivity at the oxide/solution interface. The apatite-forming ability was examined by immersion in simulated body fluid. At short times the apatite coverage was 26% for the anodized surfaces, significantly larger than for the reference with only 3% coverage. After one week of immersion the apatite coverage ranged from 73% to 56% and a slight differentiation between the anodized surfaces was obtained with less apatite formation on the surface with lower conductivity, in line with the cell culture results.

apatite formation

surface roughness

osteoblast-like MG-63 cells

Impedance spectroscopy

density of states

Författare

Johanna Löberg

Göteborgs universitet

Christina Gretzer

Ingela Mattisson

Elisabet Ahlberg

Göteborgs universitet

Journal of Biomedical Materials Research - Part B Applied Biomaterials

1552-4973 (ISSN)

Vol. 102 826-839

Ämneskategorier

Materialkemi

Biomaterialvetenskap

DOI

10.1002/jbm.b.33065