Cooperative Simultaneous Localization and Synchronization: A Distributed Hybrid Message Passing Algorithm
Paper i proceeding, 2013

Cooperative sensor self-localization (CSL) in wireless networks usually requires the nodes to be equipped with specific ranging hardware including ultra-wideband or ultrasonic distance sensors. Such designs are not suitable for application in low-cost, low-power sensor networks. Here, we demonstrate how low-cost, low-power, asynchronous sensor nodes can be used to perform CSL (and, simultaneously, distributed synchronization) by means of time-stamped communication without additional ranging hardware. Our method combines a belief propagation message passing algorithm for cooperative simultaneous localization and synchronization (CoSLAS) with a MAC-layer time stamping scheme.We validate the models underlying the CoSLAS algorithm by means of measurements, and we demonstrate that the localization accuracy achieved by our hardware implementation is far better than that corresponding to the time resolution and measurement errors of the hardware.


B. Etzlinger

Johannes Kepler Universität Linz (JKU)

Florian Meyer

Technische Universität Wien

A. Springer

Johannes Kepler Universität Linz (JKU)

Franz Hlawatsch

Technische Universität Wien

Henk Wymeersch

Signaler och system, Kommunikationssystem, informationsteori och antenner, Kommunikationssystem

IEEE 8th Sensor Array and Multichannel Signal Processing Workshop, SAM 2014, A Coruna, Spain, 22-25 June 2014

1058-6393 (ISSN)



Informations- och kommunikationsteknik