Spatial models generated by nested stochastic partial differential equations, with an application to global ozone mapping
Artikel i vetenskaplig tidskrift, 2011

A new class of stochastic field models is constructed using nested stochastic partial differential equations (SPDEs). The model class is computationally efficient, applicable to data on general smooth manifolds, and includes both the Gaussian Matérn fields and a wide family of fields with oscillating covariance functions. Nonstationary covariance models are obtained by spatially varying the parameters in the SPDEs, and the model parameters are estimated using direct numerical optimization, which is more efficient than standard Markov Chain Monte Carlo procedures. The model class is used to estimate daily ozone maps using a large data set of spatially irregular global total column ozone data. © Institute of Mathematical Statistics, 2011.

Matérn covariances

Total column ozone data

Nonstationary covariances

Nested SPDEs


David Bolin

Chalmers, Matematiska vetenskaper, matematisk statistik

Göteborgs universitet

Finn Lindgren

Annals of Applied Statistics

1932-6157 (ISSN)

Vol. 5 523-550


Sannolikhetsteori och statistik