Biofilm formation on nanostructured hydroxyapatite-coated titanium
Artikel i vetenskaplig tidskrift, 2014

Biofilm formation on medical devices is a common cause of implant failure, especially regarding implants that breach the epithelial tissue, so-called transcutaneous implants. Nanotechnology and the development of new nanomaterials have given the opportunity to design nanotextured implant surfaces. Such surfaces have been studied using various in vitro methods showing that nanosized features strongly benefit bone cell growth. However, little is known on how nanostructured features affect biofilm formation. The aim of this study was therefore to examine the shape- and chemical-dependent effect of a nanostructured hydroxyapatite (HA) coating on the degree of Staphylococcus epidermidis biofilm formation. Three different types of nanosized HA particles having different shapes and calcium to phosphate ratios were compared to uncoated turned titanium using safranin stain in a biofilm assay and confocal laser scanning microscopy (CLSM) for assessment of biofilm biomass and bacterial volume, respectively. No difference in biofilm biomass was detected for the various surfaces after 6 h incubation with S. epidermidis. Additionally, image analysis of CLSM Z-stacks confirmed the biofilm assay and showed similar results. In conclusion, the difference in nanomorphology and chemical composition of the surface coatings did not influence the adhesion and biofilm formation of S. epidermidis.

Staphylococcus epidermidis

hydroxyapatite

biofilm

implant

nanomorphology

Författare

Emma Westas

Chalmers, Kemi- och bioteknik, Teknisk ytkemi

M. Gillstedt

Sahlgrenska universitetssjukhuset

J. Lönn-Stensrud

Universitetet i Oslo

E.M. Bruzell

Nordisk Institutt for Odontologiske Materialer

Martin Andersson

Chalmers, Kemi- och bioteknik, Teknisk ytkemi

Journal of Biomedical Materials Research - Part A

1549-3296 (ISSN) 15524965 (eISSN)

Vol. 102 4 1063-1070

Drivkrafter

Hållbar utveckling

Innovation och entreprenörskap

Ämneskategorier

Odontologi

Biologiska vetenskaper

Mikrobiologi

Nanoteknik

Ortopedi

Medicinska material och protesteknik

Styrkeområden

Materialvetenskap

DOI

10.1002/jbm.a.34757

Mer information

Senast uppdaterat

2018-05-08