Pedestrian Detection using Augmented Training Data
Paper i proceeding, 2014

Detecting pedestrians is a challenging and widely explored problem in computer vision. Many approaches rely on large quantities of manually labelled training data to learn a pedestrian classifier. To reduce the need for collecting and manually labelling real image training data, this paper investigates the possibility to use augmented images to train a pedestrian classifier. Augmented images are generated by rendering virtual pedestrians onto real image backgrounds. Classifiers learned from real or augmented training data are evaluated on real image test data from the widely used Daimler Mono Pedestrian benchmark data set. Results show that augmented training data generated from a single 200 frame image sequence reach 70% average detection rate at one False Positives Per Image (FPPI), compared to 81% for a classifier trained by a large-scale real data set. Results also show that complementing real training data with augmented data improves detection performance, compared to using real training data only.

argumented data

SVMs

Pedestrain detection

vehicle safety

detetion

classification

Författare

Jonas Nilsson

Chalmers, Signaler och system, System- och reglerteknik

Patrik Andersson

Chalmers, Signaler och system

Irene Yu-Hua Gu

Chalmers, Signaler och system, Signalbehandling och medicinsk teknik

Jonas Fredriksson

Chalmers, Signaler och system, System- och reglerteknik

Proceedings - International Conference on Pattern Recognition

10514651 (ISSN)

4548-4553
978-147995208-3 (ISBN)

Styrkeområden

Transport

Ämneskategorier

Farkostteknik

Signalbehandling

Datorseende och robotik (autonoma system)

DOI

10.1109/ICPR.2014.778

ISBN

978-147995208-3

Mer information

Senast uppdaterat

2024-01-03