Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway
Artikel i vetenskaplig tidskrift, 2014

Background: Due to an increasing demand of transportation fuels, a lower availability of cheap crude oil and a lack of sustainability of fossil fuels, a gradual shift from petroleum based fuels towards alternative and renewable fuel resources will be required in the near future. Fatty acid ethyl esters (FAEEs) have properties similar to current crude diesel and could therefore form an important contribution to the development of sustainable transportation fuels in future. It is important to develop novel cell factories for efficient production of FAEEs and their precursors. Results: Here, a Saccharomyces cerevisiae cell factory expressing a heterologous wax ester synthase (ws2) from Marinobacter hydrocarbonoclasticus was used to produce FAEEs from ethanol and acyl-coenzyme A (acyl-CoA). The production of acyl-CoA requires large amounts of NADPH and acetyl-CoA. Therefore, two metabolic engineering strategies for improved provision of NADPH and acetyl-CoA were evaluated. First, the ethanol degradation pathway was employed to re-channel carbon flow towards the synthesis of acetyl-CoA. Therefore, ADH2 and ALD6 encoding, respectively, alcohol dehydrogenase and acetaldehyde dehydrogenase were overexpressed together with the heterologous gene acs(SE)(L641P) encoding acetyl-CoA synthetase. The co-overexpression of ADH2, ALD6 and acs(SE)(L641P) with ws2 resulted in 408 +/- 270 mu g FAEE gCDW-1, a 3-fold improvement. Secondly, for the expression of the PHK pathway two genes, xpkA and ack, both descending from Aspergillus nidulans, were co-expressed together with ws2 to catalyze, respectively, the conversion of xylulose-5-phosphate to acetyl phosphate and glyceraldehyde3-phosphate and acetyl phosphate to acetate. Alternatively, ack was substituted with pta from Bacillus subtilis, encoding phosphotransacetylase for the conversion of acetyl phosphate to acetyl-CoA. Both PHK pathways were additionally expressed in a strain with multiple chromosomally integrated ws2 gene, which resulted in respectively 5100 +/- 509 and 4670 +/- 379 mu g FAEE gCDW(-1), an up to 1.7-fold improvement. Conclusion: Two different strategies for engineering of the central carbon metabolism for efficient provision of acetyl-CoA and NADPH required for fatty acid biosynthesis and hence FAEE production were evaluated and it was found that both the ethanol degradation pathway as well as the phosphoketolase pathway improve the yield of FAEEs.


Saccharomyces cerevisiae





Fatty acid ethyl ester (FAEE)





Metabolic engineering




Bouke Wim de Jong

Kemi- och bioteknik, Livsvetenskaper, Systembiologi

Shuobo Shi

Institute of Chemical and Engineering Sciences, A-Star, Singapore

Verena Siewers

Kemi- och bioteknik, Livsvetenskaper, Systembiologi

Jens B Nielsen

Kemi- och bioteknik, Livsvetenskaper, Systembiologi

Microbial Cell Factories

1475-2859 (ISSN)

Vol. 13 39




Livsvetenskaper och teknik