Collective Lie-Poisson integrators on R3
Artikel i vetenskaplig tidskrift, 2015

We develop Lie–Poisson integrators for general Hamiltonian systems on ℝ3 equipped with the rigid body bracket. The method uses symplectic realization of ℝ3 on T*ℝ2 and application of symplectic Runge–Kutta schemes. As a consequence, we obtain simple symplectic integrators for general Hamiltonian systems on the sphere S2.

Clebsch variables

symplectic realization

rigid body bracket

Lie-Poisson manifold

collective Hamiltonian

symplectic Runge-Kutta

Poisson integrator

Hopf fibration

Cayley-Klein parameters

Författare

Robert McLachlan

Massey University

Klas Modin

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

Olivier Verdier

Universitetet i Bergen

IMA Journal of Numerical Analysis

0272-4979 (ISSN) 1464-3642 (eISSN)

Vol. 35 2 546-560

Ämneskategorier (SSIF 2011)

Beräkningsmatematik

Geometri

Fundament

Grundläggande vetenskaper

DOI

10.1093/imanum/dru013

Mer information

Senast uppdaterat

2023-01-25