Intrinsic energy band alignment of functional oxides
Artikel i vetenskaplig tidskrift, 2014

The energy band alignment at interfaces between different materials is a key factor, which determines the function of electronic devices. While the energy band alignment of conventional semiconductors is quite well understood, systematic experimental studies on oxides are still missing. This work presents an extensive study on the intrinsic energy band alignment of a wide range of functional oxides using photoelectron spectroscopy with in-situ sample preparation. The studied materials have particular technological importance in diverse fields as solar cells, piezotronics, multiferroics, photoelectrochemistry and oxide electronics. Particular efforts have been made to verify the validity of transitivity, in order to confirm the intrinsic nature of the obtained band alignment and to understand the underlying principles. Valence band offsets up to 1.6 eV are observed. The large variation of valence band maximum energy can be explained by the different orbital contributions to the density of states in the valence band. The framework provided by this work enables the general understanding and prediction of energy band alignment at oxide interfaces, and furthermore the tailoring of energy level matching for charge transfer in functional oxides. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

functional oxides

transitivity

electronic structure

photoelectron spectroscopy

energy band alignment

Författare

Shunyi Li

Technische Universität Darmstadt

F. Chen

Technische Universität Darmstadt

R. Schafranek

Technische Universität Darmstadt

T. J. M. Bayer

Technische Universität Darmstadt

Karsten Rachut

Technische Universität Darmstadt

A. Fuchs

Technische Universität Darmstadt

S. Siol

Technische Universität Darmstadt

M. Weidner

Technische Universität Darmstadt

M. Hohmann

Technische Universität Darmstadt

Verena Pfeifer

Technische Universität Darmstadt

Jan Morasch

Technische Universität Darmstadt

C. Ghinea

Technische Universität Darmstadt

E. Arveux

Technische Universität Darmstadt

R. Gunzler

Technische Universität Darmstadt

J. Gassmann

Technische Universität Darmstadt

C. Korber

Technische Universität Darmstadt

Y. Gassenbauer

Technische Universität Darmstadt

F. Sauberlich

Technische Universität Darmstadt

G. V. Rao

Technische Universität Darmstadt

S. Payan

Institut de Chimie de la Matiere Condensee de Bordeaux

M. Maglione

Institut de Chimie de la Matiere Condensee de Bordeaux

C. Chirila

Institut de Physique des Materiaux, Bucarest-Magurele

L. Pintilie

Institut de Physique des Materiaux, Bucarest-Magurele

L. C. Jia

Helmholtz-Zentrum Berlin für Materialien und Energie (HZB)

K. Ellmer

Helmholtz-Zentrum Berlin für Materialien und Energie (HZB)

M. Naderer

Technische Universität Graz

K. Reichmann

Technische Universität Graz

U. Bottger

RWTH Aachen University

S. Schmelzer

RWTH Aachen University

R. C. Frunza

Institut Jozef Stefan

H. Ursic

Institut Jozef Stefan

B. Malic

Institut Jozef Stefan

W. B. Wu

Hefei National Laboratory for Physical Sciences at Microscale

Paul Erhart

Chalmers, Teknisk fysik, Material- och ytteori

A. Klein

Technische Universität Darmstadt

Physica Status Solidi - Rapid Research Letetrs

1862-6254 (ISSN) 1862-6270 (eISSN)

Vol. 8 571-576

Styrkeområden

Nanovetenskap och nanoteknik

Materialvetenskap

Ämneskategorier

Energiteknik

Den kondenserade materiens fysik

Infrastruktur

C3SE (Chalmers Centre for Computational Science and Engineering)

DOI

10.1002/pssr.201409034