Symmetrization of Plurisubharmonic and Convex Functions
Artikel i vetenskaplig tidskrift, 2014

We show that Schwarz symmetrization does not increase the Monge-Ampere energy for S-1-invariant plurisubharmonic functions in the ball. As a result, we derive a sharp Moser-Trudinger inequality for such functions. We also show that similar results do not hold for other balanced domains except for complex ellipsoids, and discuss related questions for convex functions.

Plurisubharmonic

Monge-Ampere

Mathematics

Författare

Robert Berman

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

Bo Berndtsson

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

Indiana University Mathematics Journal

0022-2518 (ISSN)

Vol. 63 2 345-365

Ämneskategorier

Matematik

DOI

10.1512/iumj.2014.63.5209

Mer information

Skapat

2017-10-07