Tractable Algorithms for Robust Model Estimation
Artikel i vetenskaplig tidskrift, 2015

What is the computational complexity of geometric model estimation in the presence of noise and outliers? We show that the number of outliers can be minimized in polynomial time with respect to the number of measurements, although exponential in the model dimension. Moreover,for a large class of problems, we prove that the statistically more desirable truncated L2-norm can be optimized with the same complexity. In a similar vein, it is also shown how to transform a multi-model estimation problem into a purely combinatorial one—with worst-case complexity that is polynomial in the number of measurements but exponential in the number of models. We apply our framework to a series of hard fitting problems. It gives a practical method for simultaneously dealing with measurement noise and large amounts of outliers in the estimation of low-dimensional models. Experimental results and a comparison to random sampling techniques are presented for the applications rigid registration, triangulation and stitching.

Författare

Olof Enqvist

Chalmers, Signaler och system, Signalbehandling och medicinsk teknik

Erik Ask

Lunds universitet

Fredrik Kahl

Chalmers, Signaler och system, Signalbehandling och medicinsk teknik

K. Aström

Lunds universitet

International Journal of Computer Vision

0920-5691 (ISSN) 15731405 (eISSN)

Vol. 112 1 115-129

Ämneskategorier

Datorseende och robotik (autonoma system)

Medicinsk bildbehandling

DOI

10.1007/s11263-014-0760-2

Mer information

Senast uppdaterat

2018-03-02