Force density limits in low-speed PM machines due to temperature and reactance
Artikel i vetenskaplig tidskrift, 2004

This paper discusses two of the mechanisms that limit the attainable force density in slotted low-speed permanent-magnet (PM) electric machines. Most of the interest is focused on the force density limits imposed by heating of the windings and by stator reactance. The study is based on analytical models for the force and reactance calculations and a lumped parameter thermal model. It is found that in a machine with an indirectly cooled stator, it is difficult to achieve a force density greater than 100kN m 2 due to temperature limits. A high force density is achieved by using deep slots, which lead to high reactance. The high reactance severely increases the converter kilovolt-ampere requirement and total system cost. It is also shown that the cost caused by the high reactance will also limit the force density reached. In machines with one slot per pole per phase, the reactance limited the useful slot depth to approximately 200 mm. However, in machines having a greater number of slots per pole per phase the reactance becomes no longer an important limiting factor for the slot depth and force density.

thermal limits


Electric machines

permanent magnet

high torque

force density

low speed



Anders Grauers

Institutionen för elkraftteknik, Kraftelektronik och vindenergi

Prakashraj Kasinathan

Chalmers, Institutionen för elteknik

IEEE Transactions on Energy Conversion

0885-8969 (ISSN)

Vol. 19 518-525




Annan elektroteknik och elektronik