A BDD-Based Approach for Designing Maximally Permissive Deadlock Avoidance Policies for Complex Resource Allocation Systems
Artikel i vetenskaplig tidskrift, 2015

In order to develop a computationally efficient implementation of the maximally permissive deadlock avoidance policy (DAP) for complex resource allocation systems (RAS), a recent approach focuses on the identification of a set of critical states of the underlying RAS state-space, referred to as minimal boundary unsafe states. The availability of this information enables an expedient one-step-lookahead scheme that prevents the RAS from reaching outside its safe region. The work presented in this paper seeks to develop a symbolic approach, based on binary decision diagrams (BDDs), for efficiently retrieving the (minimal) boundary unsafe states from the underlying RAS state-space. The presented results clearly demonstrate that symbolic computation enables the deployment of the maximally permissive DAP for complex RAS with very large structure and state-spaces with limited time and memory requirements. Furthermore, the involved computational costs are substantially reduced through the pertinent exploitation of the special structure that exists in the considered problem.

Binary decision diagrams

deadlock avoidance

discrete event systems

resource allocation systems

supervisory control theory

maximal permissiveness

Författare

Zhennan Fei

Chalmers, Signaler och system, System- och reglerteknik

Spyros Reveliotis

Georgia Institute of Technology

Sajed Miremadi

Chalmers, Signaler och system, System- och reglerteknik

Knut Åkesson

Chalmers, Signaler och system, System- och reglerteknik

IEEE Transactions on Automation Science and Engineering

1545-5955 (ISSN) 15583783 (eISSN)

Vol. 12 3 990-1006 6990639

Styrkeområden

Produktion

Ämneskategorier

Robotteknik och automation

Reglerteknik

DOI

10.1109/TASE.2014.2369858

Mer information

Senast uppdaterat

2022-04-05