Photonic nanostructures for advanced light trapping in thin crystalline silicon solar cells
Artikel i vetenskaplig tidskrift, 2015

We report on the fabrication, integration, and simulation, both optical and optoelectrical, of two-dimensional photonic nanostructures for advanced light trapping in thin crystalline silicon (c-Si) solar cells. The photonic nanostructures are fabricated by the combination of various lithography (nanoimprint, laser interference, and hole mask colloidal) and etching (dry plasma and wet chemical) techniques. The nanopatterning possibilities thus range from periodic to random corrugations and from inverted nanopyramids to high aspect ratio profiles. Optically, the nanopatterning results in better performance than the standard pyramid texturing, showing a more robust behavior with respect to light incidence angle. Electrically, wet etching results in higher minority carrier lifetimes compared to dry etching. From the integration of the photonic nanostructures into a micron-thin c-Si solar cell certain factors limiting the efficiencies are identified. More precisely: (a) the parasitic absorption is limiting the short circuit current, (b) the conformality of thin-film coatings on the nanopatterned surface is limiting the fill factor, and (c) the material damage from dry etching is limiting the open circuit voltage. From optical simulations, the optimal pattern parameters are identified. From optoelectrical simulations, cell design considerations are discussed, suggesting to position the junction on the opposite side of the nanopattern.

photonic crystals

solar cells

silicon

thin films

light trapping

photonic nanostructures

Författare

C. Trompoukis

KU Leuven

I. Abdo

R. Cariou

Laboratoire de Physique des Interfaces et des Couches Minces

I. Cosme

Laboratoire de Physique des Interfaces et des Couches Minces

W. H. Chen

Laboratoire de Physique des Interfaces et des Couches Minces

O. Deparis

University of Namur

Alexander Dmitriev

Chalmers, Teknisk fysik, Bionanofotonik

E. Drouard

Institut des Nanotechnologies de Lyon

M. Foldyna

Laboratoire de Physique des Interfaces et des Couches Minces

E. Garcia-Caurel

Laboratoire de Physique des Interfaces et des Couches Minces

I. Gordon

B. Heidari

Obducat Technologies AB

A. Herman

University of Namur

L. Lalouat

Institut des Nanotechnologies de Lyon

K. Lee

Obducat Technologies AB

Johan Liu

Institut des Nanotechnologies de Lyon

Kristof Lodewijks

Chalmers, Teknisk fysik, Bionanofotonik

F. Mandorlo

Institut des Nanotechnologies de Lyon

Ines Massiot

Chalmers, Teknisk fysik, Bionanofotonik

A. Mayer

University of Namur

Vladimir Miljkovic

Chalmers, Teknisk fysik, Bionanofotonik

J. Muller

University of Namur

R. Orobtchouk

Institut des Nanotechnologies de Lyon

G. Poulain

TOTAL S.A.

P. Prod'Homme

TOTAL S.A.

P. R. I. Cabarrocas

C. Seassal

Institut des Nanotechnologies de Lyon

J. Poortmans

KU Leuven

R. Mertens

O. El Daif

V. Depauw

Physica Status Solidi (A) Applications and Materials

1862-6300 (ISSN) 1862-6319 (eISSN)

Vol. 212 1 140-155

Nanophotonics for ultra-thin crystalline silicon photovoltaics (PHOTONVOLTAICS)

Europeiska kommissionen (FP7), 2012-11-01 -- 2015-10-31.

Ämneskategorier

Nanoteknik

DOI

10.1002/pssa.201431180