Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo
Artikel i vetenskaplig tidskrift, 2015

Tissue engineering provides a promising alternative therapy to the complex surgical reconstruction of auricular cartilage by using ear-shaped autologous costal cartilage. Bacterial nanocellulose (BNC) is proposed as a promising scaffold material for auricular cartilage reconstruction, as it exhibits excellent biocompatibility and secures tissue integration. Thus, this study evaluates a novel bilayer BNC scaffold for auricular cartilage tissue engineering. Bilayer BNC scaffolds, composed of a dense nanocellulose layer joined with a macroporous composite layer of nanocellulose and alginate, were seeded with human nasoseptal chondrocytes (NC) and cultured invitro for up to 6 weeks. To scale up for clinical translation, bilayer BNC scaffolds were seeded with a low number of freshly isolated (uncultured) human NCs combined with freshly isolated human mononuclear cells (MNC) from bone marrow in alginate and subcutaneously implanted in nude mice for 8 weeks. 3D morphometric analysis showed that bilayer BNC scaffolds have a porosity of 75% and mean pore size of 50±25μm. Furthermore, endotoxin analysis and invitro cytotoxicity testing revealed that the produced bilayer BNC scaffolds were non-pyrogenic (0.15±0.09EU/ml) and non-cytotoxic (cell viability: 97.8±4.7%). This study demonstrates that bilayer BNC scaffolds offer a good mechanical stability and maintain a structural integrity while providing a porous architecture that supports cell ingrowth. Moreover, bilayer BNC scaffolds provide a suitable environment for culture-expanded NCs as well as a combination of freshly isolated NCs and MNCs to form cartilage invitro and invivo as demonstrated by immunohistochemistry, biochemical and biomechanical analyses.

Bacterial cellulose

Tissue engineering

Ear cartilage


Mononuclear cells

Nasoseptal chondrocytes


Hector Martinez Avila

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Eva-Maria Feldmann

Universitätsklinikum Ulm

M.M. Pleumeekers

Erasmus Universiteit Rotterdam

L. Nimeskern

Eidgenössische Technische Hochschule Zürich (ETH)

W. Kuo

Eidgenössische Technische Hochschule Zürich (ETH)

W.C. De Jong

CellCoTec BV

S. Schwarz

Universitätsklinikum Ulm

R. Müller

Eidgenössische Technische Hochschule Zürich (ETH)

J.A.A. Hendriks

CellCoTec BV

N. Rotter

Universitätsklinikum Ulm

G.J.V.M. Van Osch

Erasmus Universiteit Rotterdam

K. S. Stok

Eidgenössische Technische Hochschule Zürich (ETH)

Paul Gatenholm

Chalmers, Kemi och kemiteknik, Tillämpad kemi


0142-9612 (ISSN)

Vol. 44 122-133




Medicinska material och protesteknik



Mer information

Senast uppdaterat