Determinant of the information matrix: a new rotation invariant optimality metric to design gradient encoding schemes
Paper i proceeding, 2015

Minimum condition number (CN) gradient encoding scheme was introduced to diffusion MRI community more than a decade ago. It’s computation requires tedious numerical optimization which usually leads to sub-optimal solutions. The CN does not reflect any benefits in acquiring more measurements, i.e. it’s optimal value is constant for any number of measurements. Further, it is variable under rotation. In this paper we (i) propose an accurate method to compute minimum condition number scheme; and (ii) introduce determinant of the information matrix (DIM) as a new optimality metric that scales with number of measurements and does reflect what one would gain from acquiring more measurements. Theoretical analysis shows that DIM is rotation invariant. Evaluations on state-of-the-art encoding schemes proves the relevance and superiority of the proposed metric compared to condition number.

optimality metrics

Condition number

Diffusion tensor imaging

determinant of information matrix

Författare

Mohammad Alipoor

Chalmers, Signaler och system, Signalbehandling och medicinsk teknik

Irene Yu-Hua Gu

Chalmers, Signaler och system, Signalbehandling och medicinsk teknik

12th IEEE International Symposium on Biomedical Imaging, ISBI 2015, Brooklyn, United States, 16-19 April 2015

1945-8452 (eISSN)

Vol. 2015-July 462-465
978-1-4799-2374-8 (ISBN)

Ämneskategorier

Medicinteknik

Fundament

Grundläggande vetenskaper

Styrkeområden

Livsvetenskaper och teknik (2010-2018)

DOI

10.1109/ISBI.2015.7163911

ISBN

978-1-4799-2374-8

Mer information

Senast uppdaterat

2024-07-12