Product set phenomena for countable groups
Artikel i vetenskaplig tidskrift, 2015

We develop in this paper novel techniques to analyze local combinatorial structures in product sets of two subsets of a countable group which are "large" with respect to certain classes of (not necessarily invariant) means on the group. Our methods heavily utilize the theory of C*-algebras and random walks on groups. As applications of our methods, we extend and quantify a series of recent results by Jin, Bergelson-Furstenberg-Weiss, Beiglbock-Bergelson-Fish, Griesmer and Di Nasso-Lupini to general countable groups.

Additive combinatorics

Mathematics

Random walks on groups

Ergodic Ramsey theory

Topological dynamics

Författare

Michael Björklund

Eidgenössische Technische Hochschule Zürich (ETH)

Chalmers, Matematiska vetenskaper, Matematik

A. Fish

The University of Sydney

Advances in Mathematics

0001-8708 (ISSN) 1090-2082 (eISSN)

Vol. 275 47-113

Ämneskategorier

Matematik

DOI

10.1016/j.aim.2015.02.005

Mer information

Senast uppdaterat

2021-10-19