Analysis of impact loads on a self-elevating unit during jacking operation
Paper i proceeding, 2015

The renewable energy resource of offshore wind is believed to have a great potential in playing an essential role on the future energy market in Europe, but there are complications such as harsh weather and low accessibility. To manage this, most offshore wind turbines of today are installed and maintained using self-elevating units (SEUs). In this study, a method is presented that enables the analysis of weather window assessments for the installation and retrieval phases of a SEU. The method of analysis takes site-specific parameters, defined as soil type and water depth, into account in addition to vessel-specific and environmental parameters. The inclusion of site-specific parameters is the novel contribution compared to assessment methodologies used today. A simulation model is presented that incorporates a coupled non-linear time-domain analysis of vessel motion and soil-structure interaction. Soil deformation behaviour during impact is described by resistance curves based on a bearing capacity theory. A structural evaluation criterion against which impact forces are compared is used for weather window assessments. The simulation model is applied on a case study utilizing different soil types to study impact forces and the capacity of the structure for withstanding such impacts and eventually performing a weather window assessment. The results show that the jacking operation can be divided into two phases when it comes to loads on the spudcan: a phase dominated by vertical forces followed by a phase dominated by horizontal forces. It is found that including soil deformation behaviour is of paramount importance to the magnitude of the resulting impact forces and that class-recommended practice does indeed produce rather large force estimates. Thus, assessments where site-specific parameters are incorporated could definitely increase the operable weather window for SEUs, and, consequently, increase the economic competitiveness of, for example, the offshore wind industry.

self-elevating unit

structural capacity

impact loads

bearing capacity


weather window.



Jonas Ringsberg

Chalmers, Sjöfart och marin teknik, Marin teknik

Viktor Daun

Chalmers, Sjöfart och marin teknik

Fredrik Olsson

Chalmers, Sjöfart och marin teknik

Proceedings of The ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2015)

1-13 OMAE2015-41030
978-0-7918-5649-9 (ISBN)

The ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2015)
St John's, NL, Canada,

Chalmers styrkeområde Transport – finansiering 2015

Chalmers, 2015-01-01 -- 2015-12-31.



Building Futures (2010-2018)





Geovetenskap och miljövetenskap



Grundläggande vetenskaper



Mer information

Senast uppdaterat