On the solvability and asymptotics of the Boltzmann equation in irregular domains.
Artikel i vetenskaplig tidskrift, 1997

The paper considers the Boltzmann equation in irregular domains with finite Hausdorff measure of the boundary and a cone condition. The boundary interaction is of diffuse reflection type with constanc temperature on the boundary. The main results obtained are existence in a DiPerna—Lions style, and strong convergence to equilibrium in L1 when time tends to infinity, for the Boltzmann equation with Maxwellian boundary conditions in a bounded measure sense.

Di Perna-Lions solutions

Boltzmann equation

irregular boundaries


Alexey Geynts

Göteborgs universitet

Institutionen för matematik, Matematik/Tillämpad matematik

Leif Arkeryd

Institutionen för matematik

Göteborgs universitet

Communications in Partial Differential Equations

0360-5302 (ISSN) 1532-4133 (eISSN)

Vol. 22 2129-2152


Grundläggande vetenskaper


Matematisk analys