Efficient estimation of the number of false positives in high-throughput screening
Artikel i vetenskaplig tidskrift, 2015

This paper develops tail estimation methods to handle false positives in multiple testing problems where testing is done at extreme significance levels and with low degrees of freedom, and where the true null distribution may differ from the theoretical one. We show that the number of false positives, conditional on the total number of positives, has an approximately binomial distribution, and we find estimators of the distribution parameter. We also develop methods for estimation of the true null distribution, as well as techniques to compare it with the theoretical one. Analysis is based on a simple polynomial model for very small p-values. Asymptotics that motivate the model, properties of the estimators, and model-checking tools are provided. The methods are applied to two large genomic studies and an fMRI brain scan experiment.

High-throughput screening

SmartTail

Correction of p-values

Positive false discovery rate

Multiple testing

False discovery rate

Extreme value statistics

Författare

Holger Rootzen

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematisk statistik

Dmitrii Zholud

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematisk statistik

Biometrika

0006-3444 (ISSN) 1464-3510 (eISSN)

Vol. 102 3 695-704

Ämneskategorier

Matematik

Sannolikhetsteori och statistik

Fundament

Grundläggande vetenskaper

Styrkeområden

Livsvetenskaper och teknik (2010-2018)

DOI

10.1093/biomet/asv015

Mer information

Skapat

2017-10-07