Diffeomorphic density matching by optimal information transport
Artikel i vetenskaplig tidskrift, 2015

We address the following problem: given two smooth densities on a manifold, find an optimal diffeomorphism that transforms one density into the other. Our framework builds on connections between the Fisher–Rao information metric on the space of probability densities and right-invariant metrics on the infinite-dimensional manifold of diffeomorphisms. This optimal information transport, and modifications thereof, allow us to construct numerical algorithms for density matching. The algorithms are inherently more efficient than those based on optimal mass transport or diffeomorphic registration. Our methods have applications in medical image registration, texture mapping, image morphing, nonuniform random sampling, and mesh adaptivity. Some of these applications are illustrated in examples.

Information geometry

Diffeomorphism groups

Random sampling

Density matching

Image registration

Optimal transport

Fisher–rao metric


M. Bauer

Universitat Wien

S. Joshi

University of Utah

Klas Modin

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

SIAM Journal on Imaging Sciences

1936-4954 (ISSN)

Vol. 8 1718-1751





Grundläggande vetenskaper


Livsvetenskaper och teknik