Use of discontinuity factors in high-order finite element methods
Artikel i vetenskaplig tidskrift, 2016

The discontinuity factors are a technique widely used in nodal methods to minimize the error due to spatial homogenization of cross sections for a coarse mesh core calculation. In the present work, the introduction of discontinuity factors in a high-order finite element approximation of the neutron diffusion equation is investigated. More precisely, classical reference and assembly discontinuity factors are introduced in a discontinuous Galerkin finite element method stabilized using an interior penalty formulation for the neutron diffusion equation. The proposed method is tested solving different one- and two-dimensional benchmark problems, showing that the discontinuity factors technique can be successfully introduced in the discontinuous Galerkin formulation.

discontinuity factors

finite element method

neutron diffusion equation

Författare

Antoni Vidal-Ferràndiz

Universitat Politecnica de Valencia (UPV)

Sebastian Gonzalez-Pintor

Chalmers, Fysik, Subatomär fysik och plasmafysik

Damian Ginestar

Universitat Politecnica de Valencia (UPV)

Gumersindo Verdú

Universitat Politecnica de Valencia (UPV)

Mohammad Asadzadeh

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

Christophe Demaziere

Chalmers, Fysik, Subatomär fysik och plasmafysik

Annals of Nuclear Energy

0306-4549 (ISSN)

Vol. 87 Part 2 728-738

Ämneskategorier

Annan teknik

Annan fysik

Styrkeområden

Energi

DOI

10.1016/j.anucene.2015.06.021