New Approaches for Channel Prediction Based on Sinusoidal Modeling
Artikel i vetenskaplig tidskrift, 2007

Long-range channel prediction is considered to be one of the most important enabling technologies to future wireless communication systems. The prediction of Rayleigh fading channels is studied in the frame of sinusoidal modeling in this paper. A stochastic sinusoidal model to represent a Rayleigh fading channel is proposed. Three different predictors based on the statistical sinusoidal model are proposed. These methods outperform the standard linear predictor (LP) in Monte Carlo simulations, but underperform with real measurement data, probably due to nonstationary model parameters. To mitigate these modeling errors, a joint moving average and sinusoidal (JMAS) prediction model and the associated joint least-squares (LS) predictor are proposed. It combines the sinusoidal model with an LP to handle unmodeled dynamics in the signal. The joint LS predictor outperforms all the other sinusoidal LMMSE predictors in suburban environments, but still performs slightly worse than the standard LP in urban environments.


Ming Chen

Chalmers, Signaler och system, Signalbehandling och medicinsk teknik

Torbjörn Ekman

Norges teknisk-naturvitenskapelige universitet

Mats Viberg

Chalmers, Signaler och system, Signalbehandling och medicinsk teknik

Eurasip Journal on Applied Signal Processing

1110-8657 (ISSN) 1687-0433 (eISSN)

Vol. 2007


Annan elektroteknik och elektronik



Mer information

Senast uppdaterat