Data-Streaming and Concurrent Data-Object Co-design: Overview and Algorithmic Challenges
Paper i proceeding, 2015

Processing big volumes of data generated on-line, implies needs to carry out computations on-the-fly, in the streams of data. In parallel data-stream computing, the underlying data objects can provide the means for exchanging the data so that the communication and the work imbalance between the concurrent threads performing the computation are reduced, while the pipeline parallelism is enhanced. By shedding light on the concurrent data objects and their role as articulation points in data-stream processing, we place some cornerstones to analyze the problems, propose appropriate new data structures suitable for a set of functions and identify new key challenges to improve data-stream processing through co-design with fine-grain efficient synchronization combined with the data exchange. It is interesting to point out that research in distributed computing on multiprocessor efficient and consistent data sharing through fine-grain synchronization emerged from questions in concurrent database-related research; approximately three decades since then, it is interesting to see several returns of the fruits of this expedition, helping with the new problems in the massive-data research domain, with applications in e.g. cyberphysical systems.


Vincenzo Massimiliano Gulisano

Chalmers, Data- och informationsteknik, Nätverk och system

Ioannis Nikolakopoulos

Chalmers, Data- och informationsteknik, Nätverk och system

Marina Papatriantafilou

Chalmers, Data- och informationsteknik, Nätverk och system

Philippas Tsigas

Chalmers, Data- och informationsteknik, Nätverk och system

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

03029743 (ISSN) 16113349 (eISSN)

Vol. 9295 242-260
978-3-319-24023-7 (ISBN)


Datavetenskap (datalogi)





Mer information