The Role of Quantum Interference Effects in Normal-State Transport Properties of Electron-Doped Cuprates
Artikel i vetenskaplig tidskrift, 2015

The normal-state resistivity of thin films of the infinite-layer electron-doped cuprate Sr (1-x) La (x) CuO (2 +/-delta) has been investigated. Under-doped samples, which clearly show a metal-to-insulator transition (MIT) at low temperatures, have allowed the determination of the fundamental physical mechanism behind the upturn of the resistivity, namely the quantum interference effects (QIEs) in three-dimensional systems. The occurrence of weak localization effects has been unambiguously proven by low-frequency voltage spectral density measurements, which show a linear dependence of the 1/f noise on the applied bias current at low temperatures. The identification of the QIEs at low temperatures has therefore allowed the determination of the high-temperature non-Fermi liquid metallic phase, which is dominated by a linear temperature dependence of the resistivity for all of the samples investigated.

Electron-doped cuprates

Superconductivity

Metal-insulator-transition

Författare

P. Orgiani

SPIN CNR Institute - Salerno

Laboratorio Nazionale TASC

A. Galdi

SPIN CNR Institute - Salerno

Universita degli Studi di Salerno

C. Sacco

Universita degli Studi di Salerno

SPIN CNR Institute - Salerno

Riccardo Arpaia

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Sophie Charpentier

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Floriana Lombardi

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

C. Barone

Universita degli Studi di Salerno

SPIN CNR Institute - Salerno

S. Pagano

SPIN CNR Institute - Salerno

Universita degli Studi di Salerno

D. G. Schlom

Cornell University

L. Maritato

SPIN CNR Institute - Salerno

Universita degli Studi di Salerno

Journal of Superconductivity and Novel Magnetism

1557-1939 (ISSN) 1557-1947 (eISSN)

Vol. 28 12 3481-3486

Styrkeområden

Nanovetenskap och nanoteknik

Ämneskategorier (SSIF 2011)

Nanoteknik

DOI

10.1007/s10948-015-3209-0

Mer information

Senast uppdaterat

2018-04-12