Computing genus 1 Jacobi forms
Artikel i vetenskaplig tidskrift, 2016

We develop an algorithm to compute Fourier expansions of vector valued modular forms for Weil representations. As an application, we compute explicit linear equivalences of special divisors on modular varieties of orthogonal type. We define three families of Hecke operators for Jacobi forms, and analyze the induced action on vector valued modular forms. The newspaces attached to one of these families are used to give a more memory efficient version of our algorithm. - See more at: http://www.ams.org/journals/mcom/2016-85-298/S0025-5718-2015-02992-5/#sthash.bv7cxz8N.dpuf

Författare

Martin Raum

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

Mathematics of Computation

0025-5718 (ISSN) 1088-6842 (eISSN)

Vol. 85 931-960

Ämneskategorier

Matematik

Geometri

DOI

10.1090/mcom/2992