Geometry and Electronic Properties of Glycerol Adsorbed on Bare and Transition-Metal Surface-Alloyed Au(111): A Density Functional Theory Study
Artikel i vetenskaplig tidskrift, 2016

Glycerol exists in large amounts owing to its role as a byproduct in biodiesel production, and thanks to its chemical composition, it can be converted into more high-value products, such as mono- and polyethers, esters, diols, acrolein, and others. Hence, predicting glycerol-reactive properties is of utmost importance for designing efficient catalytic processes for its selective (electro)catalytic transformations; however, such an understanding is still far from complete. In this work, we performed quantum chemical calculations to validate a range of dispersion-corrected functionals to accurately predict and interpret structural, electronic, and vibrational properties of glycerol adsorbed on bare and transition-metal surface-alloyed Au(111) surface. optB86b-vdW (van der Waals) was found to have the overall best agreement with experiments concerning lattice constant, bulk stress, surface energy, and methanol adsorption among PBE (Perdew-Burke-Ernzerhof), optB88-vdW, optPBE-vdW, vdW-DF (density functional), vdW-DF2 (density functional 2nd version), and vdW-BEEF (Bayesian error estimation functional). Glycerol adsorption energy is found to correlate well with the calculated d-band center of the transition-metal-containing Au(111) surface layer. OH stretching vibrations are found to be very sensitive of the surface-alloy atom and resulted in large shifts toward lower wavenumbers, when compared to those on bare Au(111). The latter results clearly show that adsorption of glycerol to surface-alloy atoms can be monitored in situ by infrared spectroscopy.

Författare

J. Baltrusaitis

Lehigh University

Mikael Valter

Chalmers, Fysik, Kemisk fysik

Anders Hellman

Chalmers, Fysik, Kemisk fysik

Journal of Physical Chemistry C

1932-7447 (ISSN) 1932-7455 (eISSN)

Vol. 120 1749-1757

Ämneskategorier

Atom- och molekylfysik och optik

DOI

10.1021/acs.jpcc.5b11544