Uncertainty Analysis and Order-by-Order Optimization of Chiral Nuclear Interactions
Artikel i vetenskaplig tidskrift, 2016

Chiral effective field theory (chi EFT) provides a systematic approach to describe low-energy nuclear forces. Moreover, chi EFT is able to provide well-founded estimates of statistical and systematic uncertainties-although this unique advantage has not yet been fully exploited. We fill this gap by performing an optimization and statistical analysis of all the low-energy constants (LECs) up to next-to-next-to-leading order. Our optimization protocol corresponds to a simultaneous fit to scattering and bound-state observables in the pion-nucleon, nucleon-nucleon, and few-nucleon sectors, thereby utilizing the full model capabilities of chi EFT. Finally, we study the effect on other observables by demonstrating forward-error-propagation methods that can easily be adopted by future works. We employ mathematical optimization and implement automatic differentiation to attain efficient and machine-precise first-and second-order derivatives of the objective function with respect to the LECs. This is also vital for the regression analysis. We use power-counting arguments to estimate the systematic uncertainty that is inherent to chi EFT, and we construct chiral interactions at different orders with quantified uncertainties. Statistical error propagation is compared with Monte Carlo sampling, showing that statistical errors are, in general, small compared to systematic ones. In conclusion, we find that a simultaneous fit to different sets of data is critical to (i) identify the optimal set of LECs, (ii) capture all relevant correlations, (iii) reduce the statistical uncertainty, and (iv) attain order-by-order convergence in chi EFT. Furthermore, certain systematic uncertainties in the few-nucleon sector are shown to get substantially magnified in the many-body sector, in particular when varying the cutoff in the chiral potentials. The methodology and results presented in this paper open a new frontier for uncertainty quantification in ab initio nuclear theory.

Författare

Boris Karlsson

Chalmers, Fysik, Subatomär fysik och plasmafysik

A. Ekstrom

Christian Forssen

Chalmers, Fysik, Subatomär fysik och plasmafysik

Dag Fahlin Strömberg

Chalmers, Fysik

G. R. Jansen

Oskar Lilja

Chalmers, Fysik

Mattias Lindby

Chalmers, Fysik

Björn Mattsson

Chalmers, Fysik

K. A. Wendt

Physical Review X

2160-3308 (ISSN)

Vol. 6

Ämneskategorier

Subatomär fysik

Sannolikhetsteori och statistik

Fundament

Grundläggande vetenskaper

Infrastruktur

C3SE (Chalmers Centre for Computational Science and Engineering)

DOI

10.1103/PhysRevX.6.011019