Laser-driven collisionless shock acceleration of protons
Konferensbidrag (offentliggjort, men ej förlagsutgivet), 2016

Experimental and numerical results have shown that collisionless shock acceleration is promis- ing for generation of high energy proton beams. There are many potential applications for such beams, for example: isotope generation for medical applications, ion therapy and proton radio- graphy. In this work, we use 1D1P Eulerian Vlasov-Maxwell simulations to study shock wave acceleration. Vlasov-Maxwell modeling allows for high resolution of the distribution function and is highly suitable in cases where effects of low-density tails in the distribution function need to be resolved accurately. We find that combining collisionless shock acceleration with a strong, quasi-stationary sheath- field may be a way to reach even higher maximum proton energies and optimize the ion spec- trum. We show that a layered plasma target with a combination of light and heavy ions leads to a strong quasi-static sheath-field, which induces an enhancement of the energy of shock-wave accelerated ions, without broadening their energy spectrum, if the heavy ion layer has high density.


Benjamin Svedung Wettervik

Chalmers, Fysik, Subatomär fysik och plasmafysik

Timothy Dubois

Chalmers, Fysik, Subatomär fysik och plasmafysik

Tünde Fülöp

Chalmers, Fysik, Subatomär fysik och plasmafysik

Proceedings of 43rd EPS Conference on Plasma Physics



Hållbar utveckling


Grundläggande vetenskaper


Fusion, plasma och rymdfysik

Mer information