Tight Two-Dimensional Outer-Approximations of Feasible Sets in Wireless Sensor Networks
Artikel i vetenskaplig tidskrift, 2016

Finding a tight ellipsoid that contains the intersection of a finite number of ellipsoids is of interest in positioning applications for wireless sensor networks (WSNs). To this end, we propose a novel geometrical method in 2-dimensional (2-D) space. Specifically, we first find a tight polygon, which contains the desired region and then obtain the tightest ellipse containing the polygon by solving a convex optimization problem. For demonstrating the usefulness of this method, we employ it in a distributed algorithm for elliptical outer-approximation of feasible sets in co-operative WSNs. Through simulations, we show that the proposed method gives a tighter bounding ellipse than conventional methods, while having similar computational cost.

optimal control applications & methods

localization

ernousko fl

mitigation

Computational geometry

p187

optimization

v3

uncertainty

Telecommunications

1982

localization

non-line-of-sight

Författare

S. Yousefi

McGill University

Henk Wymeersch

Chalmers, Signaler och system, Kommunikation, Antenner och Optiska Nätverk

X. W. Chang

McGill University

B. Champagne

McGill University

IEEE Communications Letters

1089-7798 (ISSN) 15582558 (eISSN)

Vol. 20 3 570-573 7383251

Coopnet

Europeiska kommissionen (EU) (EC/FP7/258418), 2011-05-01 -- 2016-04-30.

Styrkeområden

Informations- och kommunikationsteknik

Drivkrafter

Hållbar utveckling

Ämneskategorier

Signalbehandling

DOI

10.1109/lcomm.2016.2518186

Mer information

Skapat

2017-10-08