A Beta-Beta Achievability Bound with Applications
Paper i proceeding, 2016

A channel coding achievability bound expressed in terms of the ratio between two Neyman-Pearson β functions is proposed. This bound is the dual of a converse bound established earlier by Polyanskiy and Verdu ́ (2014). The new bound turns out to simplify considerably the analysis in situations where the channel output distribution is not a product distribution, for example due to a cost constraint or a structural constraint (such as orthogonality or constant composition) on the channel inputs. Connections to existing bounds in the literature are discussed. The bound is then used to derive 1) the channel dispersion of additive non-Gaussian noise channels with random Gaussian codebooks, 2) the channel dispersion of an exponential-noise channel, 3) a second-order expansion for the minimum energy per bit of an AWGN channel, and 4) a lower bound on the maximum coding rate of a multiple-input multiple-output Rayleigh-fading channel with perfect channel state information at the receiver, which is the tightest known achievability result.

Codes (symbols)

Decoding

Fading channels

White noise

Trellis codes

Channel state information

Gaussian distribution

Information theory

MIMO systems

Communication channels (information theory)

Rayleigh fading

Dispersions

Författare

Wei Yang

Princeton University

Austin Collins

Massachusetts Institute of Technology (MIT)

Giuseppe Durisi

Signaler och system, Kommunikationssystem, informationsteori och antenner, Kommunikationssystem

Yury Polyanskiy

Massachusetts Institute of Technology (MIT)

Vincent Poor

Princeton University

IEEE International Symposium on Information Theory - Proceedings

21578095 (ISSN)

2669-2673 7541783

Styrkeområden

Informations- och kommunikationsteknik

Ämneskategorier

Kommunikationssystem

Elektroteknik och elektronik

DOI

10.1109/ISIT.2016.7541783

ISBN

978-1-5090-1806-2