The Dispersion of Nearest-Neighbor Decoding for Additive Non-Gaussian Channels
Paper i proceeding, 2016

We study the second-order asymptotics of information transmission using random Gaussian codebooks and nearest neighbor (NN) decoding over a power-limited additive stationary memoryless non-Gaussian channel. We show that the dispersion term depends on the non-Gaussian noise only through its second and fourth moments. We also characterize the second-order performance of point-to-point codes over Gaussian interference networks. Specifically, we assume that each user’s codebook is Gaussian and that NN decoding is employed, i.e., that interference from unintended users is treated as noise at each decoder.

Nearest neighbors

Information transmission

Gaussian noise (electronic)

Engineering main heading: Gaussian distribution

Gaussian interference

Point to point

Information theory

Non Gaussian channels

Decoding

Dispersions

Second orders

Non-Gaussian noise

Nearest-neighbor decoding

Författare

Jonathan Scarlett

Ecole Polytechnique Federale de Lausanne (EPFL)

Vincent Y. F. Tan

Universiti Kebangsaan Singapura (NUS)

Giuseppe Durisi

Chalmers, Signaler och system, Kommunikation, Antenner och Optiska Nätverk

IEEE International Symposium on Information Theory - Proceedings

21578095 (ISSN)

Vol. 2016-August 2664-2668 7541782

Chalmers Sweden - NUS Singapore. Joint Strategic Project for Education and Research in Human-Computer interaction

STINT (2013-019), 2013-10-31 -- 2015-10-31.

Styrkeområden

Informations- och kommunikationsteknik

Drivkrafter

Hållbar utveckling

Ämneskategorier

Kommunikationssystem

Elektroteknik och elektronik

DOI

10.1109/ISIT.2016.7541782

Mer information

Senast uppdaterat

2020-01-09