Towards Big-Data Analysis of Deviation and Error Reports in Product Development Projects
Paper i proceeding, 2016

Large complex system development projects, such as complete truck development projects, take several years to carry out. They involve hundreds of engineers who develop tens of thousands of parts and millions of lines of codes. During a project, many design decisions often need to be changed due to emergence of new information. The bulk of these changes are requested late in the development process. It is known that changes late in the development process are very costly and run a risk of delaying the project. These changes are often well documented in databases, but, due to the complexity of the data, few companies analyze engineering change in a comprehensive and structured fashion. This paper argues that “big data” (specifically data mining) analysis tools can be applied for such analyses and proposes a process for carrying out the analysis and using the results for product and development process improvement. The paper further accounts for experiences gained from testing the approach on a dataset consisting of 4,000 deviation and error reports that were created during a truck development project.

big-data analysis

late product changes

Product development

Författare

Ívar Örn Arnarsson

Chalmers, Produkt- och produktionsutveckling, Produktutveckling

Johan Malmqvist

Chalmers, Produkt- och produktionsutveckling, Produktutveckling

Emil Gustavsson

Proceedings of NordDesign 2016, Trondheim, Norway

83-92

Ämneskategorier

Maskinteknik

Styrkeområden

Produktion

ISBN

978-1-904670-80-3