Enhanced Distance Subset Approximation using Class-Specific Subspace Kernel Representation for Kernel Approximation
Paper i proceeding, 2016

The computational complexity of kernel methods grows at least quadratically with respect to the training size and hence low rank kernel approximation techniques are commonly used. One of the most popular approximations is constructed by sub-sampling the training data. In this paper, we present a sampling algorithm called Enhanced Distance Subset Approximation (EDSA) based on a novel kernel function called CLAss-Specific Kernel (CLASK), which applies the idea of subspace clustering to low rank kernel approximation. By representing the kernel matrix based on a class-specific subspace model, it is allowed to use distinct kernel functions for different classes, which provides a better flexibility compared to classical kernel approximation techniques. Experimental results conducted on various UCI datasets are provided in order to verify the proposed techniques.

classification

discriminative representation

Kernel approximation

class-specific subspace model

Författare

Yinan Yu

Chalmers, Signaler och system, Signalbehandling och medicinsk teknik

Konstantinos I. Diamantaras

Chalmers, Signaler och system, Signalbehandling och medicinsk teknik

Tomas McKelvey

Chalmers, Signaler och system, Signalbehandling och medicinsk teknik

S.Y. Kung

Chalmers, Signaler och system, Signalbehandling och medicinsk teknik

IEEE International Workshop on Machine Learning for Signal Processing, MLSP

21610363 (ISSN) 21610371 (eISSN)

Vol. 2016-November
978-1-5090-0746-2 (ISBN)

Styrkeområden

Informations- och kommunikationsteknik

Ämneskategorier

Systemvetenskap

Signalbehandling

Datorseende och robotik (autonoma system)

DOI

10.1109/MLSP.2016.7738811

ISBN

978-1-5090-0746-2

Mer information

Senast uppdaterat

2023-08-08