Discretization of integro-differential equations modeling dynamic fractional order viscoelasticity
Paper i proceeding, 2006

We study a dynamic model for viscoelastic materials based on a constitutive equation of fractional order. This results in an integro-differential equation with a weakly singular convolution kernel. We discretize in the spatial variable by a standard Galerkin finite element method. We prove stability and regularity estimates which show how the convolution term introduces dissipation into the equation of motion. These are then used to prove a priori error estimates. A numerical experiment is included.

Författare

Klas Adolfsson

Dynamik

Mikael Enelund

Dynamik

Stig Larsson

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

Milena Racheva

Lecture Notes in Computer Science, Springer, ''Proceedings of Large-Scale Scientific Computations, 2005, Sozopol, Bulgaria'', I. Lirkov, S. Margenov, and J. Wasniewski (Eds.)

Vol. 3743 76-83
35-4031-994-8 (ISBN)

Ämneskategorier (SSIF 2011)

Matematik

Teknisk mekanik

ISBN

35-4031-994-8

Mer information

Skapat

2017-10-07