Efficient uncertainty quantification of a fully nonlinear and dispersive water wave model with random inputs
Artikel i vetenskaplig tidskrift, 2016

A major challenge in next-generation industrial applications is to improve numerical analysis by quantifying uncertainties in predictions. In this work we present a formulation of a fully nonlinear and dispersive potential flow water wave model with random inputs for the probabilistic description of the evolution of waves. The model is analyzed using random sampling techniques and nonintrusive methods based on generalized polynomial chaos (PC). These methods allow us to accurately and efficiently estimate the probability distribution of the solution and require only the computation of the solution at different points in the parameter space, allowing for the reuse of existing simulation software. The choice of the applied methods is driven by the number of uncertain input parameters and by the fact that finding the solution of the considered model is computationally intensive. We revisit experimental benchmarks often used for validation of deterministic water wave models. Based on numerical experiments and assumed uncertainties in boundary data, our analysis reveals that some of the known discrepancies from deterministic simulation in comparison with experimental measurements could be partially explained by the variability in the model input. Finally, we present a synthetic experiment studying the variance-based sensitivity of the wave load on an offshore structure to a number of input uncertainties. In the numerical examples presented the PC methods exhibit fast convergence, suggesting that the problem is amenable to analysis using such methods.

Free surface water waves

Generalized polynomial chaos

Sensitivity analysis

High-performance computing

Uncertainty quantification

Författare

D. Bigoni

A.P. Engsig-Karup

Claes Eskilsson

Chalmers, Sjöfart och marin teknik, Marin teknik

Journal of Engineering Mathematics

0022-0833 (ISSN) 1573-2703 (eISSN)

Vol. 101 87-113

Ämneskategorier

Matematik

Strömningsmekanik och akustik

Sannolikhetsteori och statistik

DOI

10.1007/s10665-016-9848-8