Compressed Sensing in Wireless Sensor Networks without Explicit Position Information
Artikel i vetenskaplig tidskrift, 2017

Reconstruction in compressed sensing relies on knowledge of a sparsifying transform. In a setting where a sink reconstructs a field based on measurements from a wireless sensor network, this transform is tied to the locations of the individual sensors, which may not be available to the sink during reconstruction. In contrast to previous works, we do not assume that the sink knows the position of each sensor to build up the sparsifying basis. Instead, we propose the use of spatial interpolation based on a predetermined sparsifying transform, followed by random linear projections and ratio consensus using local communication between sensors. For this proposed architecture, we upper bound the reconstruction error induced by spatial interpolation, as well as the reconstruction error induced by distributed compression. These upper bounds are then utilized to analyze the communication cost tradeoff between communication to the sink and sensor-to-sensor communication.

Författare

CHRISTOPHER LINDBERG

Chalmers, Signaler och system, Kommunikation, Antenner och Optiska Nätverk

Alexandre Graell i Amat

Chalmers, Signaler och system, Kommunikation, Antenner och Optiska Nätverk

Henk Wymeersch

Chalmers, Signaler och system, Kommunikation, Antenner och Optiska Nätverk

IIEEE Transactions on Signal and Information Processing over Networks

2373-776X (eISSN)

Vol. 3 2 404-415

Coopnet

Europeiska kommissionen (EU) (EC/FP7/258418), 2011-05-01 -- 2016-04-30.

Styrkeområden

Informations- och kommunikationsteknik

Ämneskategorier

Kommunikationssystem

Signalbehandling

DOI

10.1109/TSIPN.2016.2623091

Mer information

Skapat

2017-10-07