The free energy in a class of quantum spin systems and interchange processes
Artikel i vetenskaplig tidskrift, 2016

We study a class of quantum spin systems in the mean-field setting of the complete graph. For spin S = 1/2 , the model is the Heisenberg ferromagnet, and for general spin S ∊ 1/2N, it has a probabilistic representation as a cycle-weighted interchange process.We determine the free energy and the critical temperature (recovering results by Tóth and by Penrose when S = 1/2). The critical temperature is shown to coincide (as a function of S) with that of the q = 2S + 1 state classical Potts model, and the phase transition is discontinuous when S ≥ 1.

Författare

Jakob Björnberg

Chalmers, Matematiska vetenskaper, matematisk statistik

Göteborgs universitet

Journal of Mathematical Physics

0022-2488 (ISSN) 1089-7658 (eISSN)

Vol. 57

Ämneskategorier

Matematik

Fundament

Grundläggande vetenskaper

DOI

10.1063/1.4959238