Wireless Energy and Information Transmission using Feedback: Infinite and Finite Block-length Analysis
Artikel i vetenskaplig tidskrift, 2016
In this paper, we propose and analyze a wireless energy and information transfer system. To reduce the outage probability, compared to open-loop communication, we implement retransmission protocols both in the energy and in the information transmission phases. We use some recent results on finite block-length codes, to analyze the effect of the energy and information signals lengths on the system outage probability/throughput. Finally, under a packet transmission delay constraint, we derive the optimal power allocation and time sharing between the energy and information signals such that the energy-constrained outage probability is minimized. The simulation and analytical results demonstrate that the retransmission-based protocols are efficient techniques to reduce the energy-limited outage probability of wireless energy and information transmission systems.
power allocation
Green communication
finite block-length analysis
wireless energy and information transfer
HARQ feedback
outage probability