Proteomic insights into mannan degradation and protein secretion by the forest floor bacterium Chitinophaga pinensis
Artikel i vetenskaplig tidskrift, 2017

Together with fungi, saprophytic bacteria are central to the decomposition and recycling of biomass in forest environments. The Bacteroidetes phylum is abundant in diverse habitats, and several species have been shown to be able to deconstruct a wide variety of complex carbohydrates. The genus Chid/lop/lap is often enriched in hotspots of plant and microbial biomass degradation. We present a proteomic assessment of the ability of Chitinophaga pinensis to grow on and degrade mannan polysaccharides, using an agarose plate-based method of protein collection to minimise contamination with exopolysaccharides and proteins from lysed cells, and to reflect the realistic setting of growth on a solid surface. We show that select Polysaccharide Utilisation Loci (PULs) are expressed in different growth conditions, and identify enzymes that may be involved in mannan degradation. By comparing proteomic and enzymatic profiles, we show evidence for the induced expression of enzymes and PULs in cells grown on mannan polysaccharides compared with cells grown on glucose. In addition, we show that the secretion of putative biomass-degrading enzymes during growth on glucose comprises a system for nutrient scavenging, which employs constitutively produced enzymes. Significance of this study: Chitinophaga pinensis belongs to a bacterial genus which is prominent in microbial communities in agricultural and forest environments, where plant and fungal biomass is intensively degraded. Such degradation is hugely significant in the recycling of carbon in the natural environment, and the enzymes responsible are of biotechnological relevance in emerging technologies involving the deconstruction of plant cell wall material. The bacterium has a comparatively large genome, which includes many uncharacterised carbohydrate -active enzymes. We present the first proteomic assessment of the biomass-degrading machinery of this species, focusing on mannan, an abundant plant cell wall hemicellulose. Our findings include the identification of several novel enzymes, which are promising targets for future biochemical characterisation. In addition, the data indicate the expression of specific Polysaccharide Utilisation Loci. induced in the presence of different growth substrates. We also highlight how a constitutive secretion of enzymes which deconstruct microbial biomass likely forms part of a nutrient scavenging process. (C) 2017 Elsevier B.V. All rights reseivecl.

v139

konjac glucomannan

system

p237

gliding motility

Biochemistry & Molecular Biology

cellvibrio-japonicus

1985

ller gl

beta domain

analytical chemistry

postia-placenta

CAZyme

substrate-specificity

Label-free quantification

hydrolase family

cleary bv

1959

Chitinophaga pinensis

Secretome

v31

carbohydrate research

p426

pa14 domain

Galactoglucomannan

phanerochaete-chrysosporium

Författare

Johan Larsbrink

Chalmers, Biologi och bioteknik, Industriell bioteknik

Wallenberg Wood Science Center (WWSC)

T. R. Tuveng

Norges miljø- og biovitenskapelige universitet

P. B. Pope

Norges miljø- og biovitenskapelige universitet

Vincent Bulone

AlbaNova University Center

University of Adelaide

V. Eijsink

Norges miljø- og biovitenskapelige universitet

H. Brumer

AlbaNova University Center

Wallenberg Wood Science Center (WWSC)

Michael Smith Laboratories

Lauren S McKee

Wallenberg Wood Science Center (WWSC)

AlbaNova University Center

Journal of Proteomics

1874-3919 (ISSN)

Vol. 156 63-74

Drivkrafter

Hållbar utveckling

Ämneskategorier

Skogsvetenskap

Miljöbioteknik

DOI

10.1016/j.jprot.2017.01.003

Mer information

Senast uppdaterat

2018-05-02